Inertial Manifolds for a Smoluchowski Equation on the Unit Sphere

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inertial Manifolds for a Smoluchowski Equation on the Unit Sphere

The existence of inertial manifolds for a Smoluchowski equation – a nonlinear Fokker-Planck equation on the unit sphere which arises in modeling of colloidal suspensions – is investigated. A nonlinear and nonlocal transformation is used to eliminate the gradient from the nonlinear term.

متن کامل

Inertial manifolds for a Smoluchowski equation on a circle

The existence of inertial manifolds for a Smoluchowski equation—a nonlinear and nonlocal Fokker–Planck equation which arises in the modelling of colloidal suspensions—is investigated. The difficulty due to first-order derivatives in the nonlinearity is circumvented by a transformation. Mathematics Subject Classification: 35Kxx, 70Kxx

متن کامل

Inertial Manifolds for the Kuramoto-sivashinsky Equation

A new theorem is applied to the Kuramoto-Sivashinsky equation with L-periodic boundary conditions, proving the existence of an asymptotically complete inertial manifold attracting all initial data. Combining this result with a new estimate of the size of the globally absorbing set yields an improved estimate of the dimension, N ∼ L.

متن کامل

Remarks on a Smoluchowski Equation

We study the long time dynamics of a Smoluchowski equation arising in the modeling of nematic liquid crystalline polymers. We prove uniform bounds for the long time average of gradients of the distribution function in terms of the nondimensional parameter characterizing the intensity of the potential. In the two dimensional case we obtain lower and upper bounds for the number of steady states. ...

متن کامل

Approximate inertial manifolds for the pattern formation Cahn-Hilliard equation

An approximate inertial manifold for an évolution équation is a finite dimensional smooth manifold such that the orbits enter, after a transient time, a very thin neighbourhood of the manifold In this paper, we consider the Cahn-Hilliard équation and we present a method which allows to construct several approximate inertial manifolds providing better and better order approximations to the orbit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications in Mathematical Physics

سال: 2008

ISSN: 0010-3616,1432-0916

DOI: 10.1007/s00220-008-0460-2